Recommended

The Hla-drb1 Alleles Effects On Multiple Sclero...

Asian Journal Of Cognitive Neurology

Analysis Of Cingulate Cortices To Select Prescr...

Impact Of Lgs On Caregivers And Family

Advances In The Therapy Of Multiple Sclerosis

0 votes
Glutamate Pathway Implication In Amyotrophic Lateral Sclerosis: What Is The Signal In The Noise?
Author: Virginia Le Verche, Burcin Ikiz, Arnaud Jacquier, Serge Przedborski, Diane B Re
Publisher: Derivative Works
22 pages
One time payment: €0.00
Required subscription: Free
Type of publication: Article
ISBN/ISSN: 1178-699X
DOI: 10.2147/JRLCR.S6504
Follow this publisher

Share this publication:

Description:

Abstract: The cause of the fatal motor neuron disease, amyotrophic lateral sclerosis (ALS), remains largely unknown. Most cases of ALS are sporadic and, for ~20% of familial ALS patients, mutations in the superoxide dismutase-1 (SOD1) gene have been identified. Transgenic rodents overexpressing mutant SOD1 emulate the disease and constitute the best ALS animal model so far. Several lines of evidence suggest that ALS is a multifactorial condition. In this review, we discuss the question of the involvement of the glutamate pathways in ALS-induced motor neuron death. As such, we review the data implicating glutamate metabolism alterations, glutamatergic environmental toxins, glutamate transporter/receptor defects, and Ca2+-mediated glutamate toxicity in the etiopathogenesis of ALS. Given the published data, we contend that glutamate-induced neurotoxicity more likely precipitates motor neuron degeneration rather than being the initiating factor of ALS. Furthermore, we propose that glutamate-induced neurotoxicity participates in the ALS deadly molecular cascade only as an executioner to put an end to a series of molecular perturbations that have irreversibly compromised motor neuron function. This could provide an explanation for the modest effect of therapeutic strategies targeting the glutamatergic system, including the only currently FDA-approved ALS treatment, riluzole. As in diseased motor neurons, overwhelming Ca2+ overload may be the converging point for glutamate, endoplasmic reticulum stress, and mitochondrial dysfunctional pathways, and only therapies targeting these simultaneously or targeting the earliest alterations initiating this deleterious cascade may have a real impact on halting ALS progression.

About the publisher:

We are a publishing house devoted to reuse CC-BY licensed published materials.

 

Using CC-BY licenses:

YOU ARE FREE TO:

  • Adapt — remix, transform, and build upon the material
  • for any purpose, even commercially.
  • The licensor cannot revoke these freedoms as long as you follow the license terms.

UNDER THE FOLLOWING TERMS:

  • No additional restrictions — You may not apply legal terms or technological measures that legally restrict others
    from doing anything the license permits.

NOTICES:

  • You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
  • No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.

Select a payment method